- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000000001000000
- More
- Availability
-
10
- Author / Contributor
- Filter by Author / Creator
-
-
Choudhary, Piyush (1)
-
Dixit, Ambesh (1)
-
Laha, Suvra S (1)
-
Mefford, O Thompson (1)
-
Sahoo, Priyambada (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Spinel ferrite-based magnetic nanomaterials have been investigated for numerous biomedical applications, including targeted drug delivery, magnetic hyperthermia therapy (MHT), magnetic resonance imaging (MRI), and biosensors, among others. Recent studies have found that zinc ferrite-based nanomaterials are favorable candidates for cancer theranostics, particularly for magnetic hyperthermia applications. Zinc ferrite exhibits excellent biocompatibility, minimal toxicity, and more importantly, exciting magnetic properties. In addition, these materials demonstrate a Curie temperature much lower than other transition metal ferrites. By regulating synthesis protocols and/or introducing suitable dopants, the Curie temperature of zinc ferrite-based nanosystems can be tailored to the MHT therapeutic window, i.e., 43–46 1C, a range which is highly beneficial for clinical hyperthermia applications. Furthermore, zinc ferritebased nanostructures have been extensively used in successful pre-clinical trials on mice models focusing on the synergistic killing of cancer cells involving magnetic hyperthermia and chemotherapy. This review provides a systematic and comprehensive understanding of the recent developments of zinc ferrite-based nanomaterials, including doped particles, shape-modified structures, and composites for magnetic hyperthermia applications. In addition, future research prospects involving pure ZnFe2O4 and its derivative nanostructures have also been proposed.more » « less
An official website of the United States government
